FM7V819L17V87YD

Перед вами впечатляющий ансамбль цвета, оптики и геометрии, способный загипнотизировать любого. Это оптическая иллюзия, обусловленная множеством зеркал и воплощённая в причудливой форме додекаэдра (двенадцатигранник). Несмотря на фантастический вид, она достаточно проста для самостоятельной сборки. Поэтому сегодня мы делимся с вами инструкцией этого сногсшибательного проекта на Arduino и светодиодах.

Необходимые материалы:

– Пластик для 3D-принтера (1 кг PETG, 1 кг PLA);

– Светодиодная лента 5 м, 144 светодиода/м, WS2812B;

– Блок питания 5В 30А 150 Вт;

– Одножильные провода 20WAG, красный и чёрный (2 м);

– Многожильный медный провод 0,5мм (2 м);

– Одножильный медный провод 0,6 мм;

– Зеркальный акриловый лист 2 мм;

– Arduino Mega или Arduino Uno;

– Винты под шестигранник M3x8 (100 шт.);

– Термоусадочные трубки;

– Супер-клей;

– 3-контактный разъём;

– Оплётка для проводов 5 мм.

Шаг 1: 3D-печать

FOQOCGEL16FPH0L

Рис. 1 Элементы додекаэдра

Первым делом нужно изготовить элементы опорной конструкции, и 3D-печать – лучший способ достижения цели. Особенно при том, что все детали уже смоделированы и доступны для скачивания на нашем сайте (файлы в формате STL).   

Но не распечатывайте всё сразу. Сначала убедитесь, что модели совместимы с остальными элементами сборки. Если вы хотите использовать нестандартные светодиоды, то размеры рамки придётся изменить. Следите за тем, чтобы ширина светодиодной ленты была меньше, чем ширина стоек, а угол между двумя соседними гранями равнялся 116°.

В дальнейшем потребуется припаять ленты к раме, поэтому при печати используйте высокотемпературный пластик, такой как PETG. Его повышенная прочность послужит дополнительным бонусом, поскольку зеркала тяжёлые и нуждаются в хорошей опоре.

Цвет выбирайте на своё усмотрение, рама будет видна только внутри сборки. Для достижения визуального эффекта бесконечной глубины рекомендуется использовать чёрный.

Настройки каждого принтера индивидуальны и непредсказуемы, но общие рекомендации для печати есть:

– Высота слоя 0,2 мм;

– Периметры 3;

– Заполнение 15%;

– Без поддержек.

Для каркаса нужно напечатать 30 отдельных стоек (файл Strut). Три из них должны немного отличаться от остальных для создания входного угла (файл Strut Input).

Прочие детали, не являющиеся частью рамы, можно напечатать пластиком PLA, используя аналогичные настройки.

Шаг 2: Каркас

Для сборки вам потребуется сделать много маленьких штифтов из нити для 3D-принтера, длиной около 10 мм.

Сборку начните с тех самых трёх стоек входного угла. Вклейте по одному штифту в левое отверстие на одном конце каждой стойки (рис. 2).

FYFHRU0L16FPH2M min

Рис. 2 Штифты

При склеивании старайтесь сразу зафиксировать все три стойки в один угол, как на рисунке 3, иначе потом будет сложно закрепить остальные части.

FSC9Z6YL16FPH2G

Рис. 3 Углы между трёх граней

Соберите раму, добавляя к каждому образованному концу по две новых стойки до тех пор, пока конструкция не сложится в один большой додекаэдр. Не забывайте использовать штифты на склейках, это увеличивает прочность.

F2WFMMJL16FPH2V

Рис. 4 Полусобранный додекаэдр

Шаг 3: Светодиоды и провода

На этом сложном этапе главное сохранять спокойствие и не торопиться. Если что-то не получается, лучше отойти в сторону, подышать и вернуться к работе позже, чем рисковать, взрывая светодиоды. Полосы могут выйти из строя одним мощным хлопком при неосторожном обращении с проводкой. Сохраняйте разум холодным и следуйте рекомендациям.

Для удобства изготовьте картонный макет, на котором можно нарисовать схему подключения и разводки проводов. Это поможет не запутаться в процессе. Для тех, кто не знаком с процессом пайки, у нас есть обучающее видео

Вот основные правила успешной коммутации:

1) Каждая положительная клемма подключена к двум другим положительным клеммам в общем узле

2) Каждая отрицательная клемма соединена с каждой отрицательной клеммой.

3) Линия данных представляет собой одну единственную змейку, которая проходит по определенной схеме по всему додекаэдру. Нужно следовать направлению светодиодных лент (у большинства есть направляющие стрелки).

F449AC0L19APTHK

Рис. 5 Пример схемы подключения

В силу физических и математических законов, додекаэдры являются «неевклидовыми»: в их гранях нет ни одного пути, который не пересекался бы с другим. Учитывая это, нужно «возвращаться» несколько раз в цикле данных, чтобы охватить все грани фигуры. Рама имеет небольшие встроенные туннели, которые можно использовать для прокладки «обратной» линии данных под светодиодной лентой (рис. 6). Вы можете распознать эти переходы на рисунке схемы.

FD3MRYUL16FPIOA

Рис. 6

Используйте одножильный провод 20AWG для подачи питания. Разделите один его конец на три части и припаяйте к ним отрезки медной проволоки, закрыв термоусадочной трубкой. Полученные провода проденьте через входной угол конструкции, как на рисунке 7.

FFROICLL16FPH4N

Рис. 7

Каждая грань додекаэдра состоит из 30 полосок по 17 светодиодов.

Для начала приклейте первые 6 полосок, начиная от входного угла, по пятиугольнику и дальше, не забывая о направлении потока данных. 

Пользуясь правилами, упомянутыми выше, начните паять. Периодически тестируйте работоспособность соединения, подключая силовой кабель к Arduino (после каждых 3-4 полосок).

Вот еще несколько советов:

– Не держите паяльник слишком близко к светодиодам, так как это может им навредить;

– Старайтесь не перегревать припой, это может привести к повреждению ленты или 3D-печатных деталей;

– Если припой не прилипает, поцарапайте поверхность меди ножом.

Шаг 4: Питание и микроконтроллер

FGO6MAUL16FPI15

Рис. 8 Коробка с блоком питания и Arduino Mega

Пришло время позаботиться о питании и управлении системы. Для удобства лучше сделать коробку и компактно разместить в ней блок питания, Arduino и несколько кнопок управления светом. Вы можете легко сделать это, используя предоставленные ранее STL-файлы для 3D-печати. 

Прикрутите блок питания к основанию коробки с помощью винтов и шестигранного ключа. Перед подключением проводов убедитесь, что у них есть специальная входная заглушка. 

Добавьте 3-контактный разъем и проденьте провода сквозь отверстие в боковой стенке коробки. Подключите одножильные провода (фаза, земля и нейтраль) к соответствующим клеммам на блоке питания. 

Если ваши светодиоды работают от напряжения 5 В, то можете подключить Arduino непосредственно к источнику питания; если же вы используете ленту на 12 В, вам понадобится преобразователь, чтобы получить желаемое напряжение 5 В.

Добавьте в сборку дополнительные элементы управления, чтобы творить цветомузыку было удобно. Например, на рисунке 9 изображены кнопки, переключающие режимы узора и цвета, и потенциометры, регулирующие яркость, насыщенность и скорость. Широту интерфейса определяйте на своё усмотрение.

F9R8LR7L1DKY3EK

Рис. 9 Кнопки и потенциометры

Шаг 5: Программирование

Здесь всё просто: для программирования светодиодов скачивайте исходный код (Файл INO) и отправляйтесь прямиком в среду разработки Arduino IDE. 

Установите библиотеку FastLED и вперёд – экспериментировать!

F9AO9ZOL16FPJG6

Рис. 10 Так выглядит додекаэдр без зеркал

Шаг 6: Зеркала

Сборка уже радует глаз, но для эффекта оптической иллюзии ей не хватает зеркал. Приложим ещё немного усилий и добавим отражающие элементы.

Сначала нужно вырезать необходимые формы из акрилового стекла. Очень важно на этом этапе не снимать защитную пленку: акрил легко царапается, велика вероятность испортить поверхность. 

Распечатайте трафарет (там же, в STL-файлах), маркером нарисуйте 12 пятиугольников и вырежьте их с помощью лобзика. (рис. 11, 12 и 13).

FEJKICML16FPJFY

Рис. 11 3D-печатный трафарет

F3UTUI7L16FPJFZ

Рис. 12 Процесс резки акрила

FKVFIRRL16FPJG3

Рис. 13 Зеркала-пятиугольники

Наконец, установите зеркала в раму додекаэдра, тщательно протерев их перед этим. Следите, чтобы в помещении не было пыли.

Начинайте установку с вершины, где вход питания, потом переходите к трём соседним граням и дальше, пока не заполните все поверхности додекаэдра зеркалами. Обратите внимание, что отражающие стороны акрила должны быть обращены внутрь. 

В завершении поставьте додекаэдр на подставку и включите питание. Всё готово! Мерцающая бесконечность перед вами, смотрите и расслабляйтесь. 

FMVJ90FL17V881I

Может, вам уже доводилось мастерить что-то со светодиодами и оптическими фокусами? Делитесь своими проектами с нами, всегда рады наблюдать за творчеством единомышленников.

Вдохновения и успехов!

 

Опубликовано в Технологии

FZL56EWL0FAG0T1

Начинающий 3D-дизайнер Том Оуверкерк показал нам удивительное сочетание развитых технологий и уютного волшебства в своём новом проекте на Arduino. Настольная лампа с парящими светодиодами выглядит эффектно и на какое-то время сбивает с толку. Но магия, лежащая в основе, очень проста: один магнит, спрятанный наверху, притягивает второй магнит, спрятанный в корпусе рассеивателя со светодиодами. Простая физика, а выглядит волшебно. Интересно, как такое собрать? 

FHIUE2IL0GPTKEI

Инструкция по созданию магнитной светодиодной лампы уже перед вами. Главное, на что стоит обратить внимание перед сборкой – 3D-печать. Том Оуверкерк смоделировал здесь каждую деталь. Он добился идеального соотношения размеров и форм, и, собрав все элементы вместе, получил устойчивую и практичную конструкцию, в которой еще и магниты можно спрятать. 

Для тех, кто чувствует себя уверенно в 3D-моделировании, разработка лампы с оригинальным дизайном может стать хорошей творческой задачей, но не обязательной в рамках описанного проекта. Ведь Том поделился необходимыми 3D-моделями в формате STL на специальной площадке Cults, а мы сделали их доступными для скачивания на нашем сайте.

Таким образом, от моделирования можно отказаться и сразу приступить к сборке проекта. Самое время узнать, какие материалы понадобятся в процессе:

– Белый пластик для  3D-принтера;

– Светодиодная лента WS2812 60LED;

– 2 неодимовых магнита 12х5 мм;

– Arduino Nano Every;

– Блок питания для светодиодной ленты 5V; 

– Разъём питания гнездо 2.1х5.5 мм 12V с клеммной колодкой;

– Силиконовый белый провод 22AWG (0,35 мм2);

– Монтажные провода.

FUED1GGL0GPTJUY

Рис. 1. Все вышеперечисленные материалы

Основные инструменты:

– 3D-принтер

– Паяльник

– Плоскогубцы

– Отвёртка

– Суперклей

Шаг 1: Распечатать детали

F00XM9UL0FAG0AB

Рис. 2. LAMP UNDERSIDE – основание лампы; LAMP BASE – основной корпус; DIFFUSION BODY – рассеиватель; DIFFUSION TOP – крышка рассеивателя; LAMP TOP – верхняя часть лампы; TOP CAP – верхняя крышка.

На этом рисунке конструкция лампы представлена в полусобранном виде. Это не попытка привить нам размышления о целостности, а всего лишь полезная шпаргалка на время сборки. И пригодиться могут не только визуальные образы деталей, но и их оригинальные названия: часто это помогает избежать путаницы в значениях и смыслах.

Поскольку 3D-модели уже есть, вам остаётся только подготовить их к печати с помощью программы-слайсера (Cura, Simplify3D, Craftware),  разложить STL-файлы на тонкие слои, чтобы объяснить принтеру на его языке (G-code), как нужно выкладывать пластик.   

По настройке печати есть всего две рекомендации: заполнение (плотность) 20-100% и печать без поддержек (по возможности). Остальные настройки – на ваше усмотрение, доверяйте личному опыту. 

Если же вы совсем новичок в 3D печати, то ни в коем случае не поддавайтесь суете и не торопитесь. Изучите настройки, поиграйтесь с ними на тренировочной модели и приготовьтесь к тому, что не все детали получаются с первого раза.

А если вы только мечтаете о своём 3D принтере, то переходите в наш телеграм канал, где мы собираемся разыгрывать парочку таких красавцев среди подписчиков!

Шаг 2: Собрать рассеиватель и магнитную ось.

FSZMGB2L0GPTJV0

Рис. 3

Действия на этом этапе могут показаться сложными и запутанными. Но мы постараемся провести вас максимально ровным и простым путём.

Цель всей сборки – проложить стабильную электрическую цепь. Цель данного этапа – связать кучку светодиодов с магнитом, чтобы он притягивал их к себе.

Прежде, чем начать, подготовьте необходимые материалы:

– три провода по 130 мм в длину (отрежьте от силиконового провода 22AWG);

– кусок светодиодной ленты, который легко помещается внутри рассеивателя;

– паяльник;

– рассеиватель, его крышка и верхняя часть лампы; 

– магниты и суперклей.

Примерная последовательность действий:

1) Припаяйте все три провода к контактам светодиодной ленты, как на рисунке 4, а противоположные концы пометьте опознавательными знаками, чтобы не запутаться, когда придёт пора подключать их к Arduino.

FU0760HL0GPTJV3

Рис. 4

2) Протяните провода через маленькое отверстие в корпусе рассеивателя, и тяните до тех пор, пока светодиоды не окажутся внутри, как на рисунке 5. Нанесите немного клея на обратную сторону светодиодной ленты и аккуратно прижмите её к стенкам рассеивателя: светодиоды должны прочно закрепиться здесь.

FGR08YML0GPTJUZ

Рис. 5

3) Заплетите косичку из проводов (рис. 6). В основном это делается ради удобства, но и доля эстетики есть.

FT8L6X6L0GPTJV1

Рис. 6

4) Возьмите один магнит и приклейте на внутреннюю сторону крышки рассеивателя (рис. 7).

FDRBMNWL0GPTJUV

Рис. 7

5) Второй магнит установите в верхней части лампы, как на рисунке 8.

FLXZSN8L0GPTJUW

Рис. 8

Закройте рассеиватель крышкой и проверьте притяжение ваших магнитов. Если всё было сделано правильно, то рассеиватель будет тянуться ровно вверх, как гелиевый шарик.

Магнитная ось готова, теперь нужно позаботиться об электропитании и управлении.

Шаг 3: Подготовить блок питания

Это маленькое подготовительное действие позволит создать площадку для дальнейшей связи светодиодов с Arduino.

Возьмите разъём питания 12V  с клеммной колодкой (тот, что зовётся мамой) и приклейте к основанию лампы, как на рисунке 9.

FSNZETEL0GPTJV4

Рис. 9

Теперь возьмите два монтажных провода (красный и чёрный) и подсоедините к клеммным колодкам (рис. 10)

FPUDBBVL0GPTJV5

Рис. 10

Эти провода потянутся к пинам Arduino уже на следующем этапе, но пока пусть полежат здесь.

Шаг 4: Закрепить и спаять

FUN1ZVUL0FAG0OZ

Рис. 11

На рисунке 11 видно, как провода от светодиодов проходят сквозь специальное отверстие в подставке и фиксируются изолентой с обратной стороны: это сделано, чтобы обезопасить сборку от внезапного вылета светодиодов и проводов далеко вверх.

Обязательно отрегулируйте высоту, на которой располагается ваш рассеиватель света. Он не должен быть слишком высоко, чтобы вся конструкция не испытывала напряжения от чрезмерного магнетизма, но и слишком низко располагать его не стоит: ослабнет влияние верхнего магнита – пропадёт вся магия. Не поленитесь и потратьте время на поиск золотой середины. а потом закрепите светодиодный провод, как на рис. 11.

Теперь можно взяться за паяльник. Для наглядности мы разместили распиновку Arduino Nano Every чуть ниже (рисунок 12). 

1) Вернитесь к тем двум проводам, которые остались у разъёма питания, и подсоедините их к пинам VIN и GND на Arduino.

2) Возьмите провода светодиодной ленты и припаяйте их к пинам GND, V5 и цифровому порту (D1 – D12). Надеемся, что вы не забыли как-то обозначить провода перед тем, как завязать в косичку.

8c4d32ab842d160ea38ddae2404ab9127dedaca0

Рис. 12

Мы всё спаяли, а значит пора двигаться дальше, к финальному этапу.

Шаг 6: Программирование Arduino

Подробно о принципах работы Arduino мы рассказывали ранее. Если вы еще не сталкивались с программированием этой платформы, то первое, с чего стоит начать – установка Arduino IDE (локальная копия). Это не просто ПО с командной строкой, это самый настоящий мост между мирами. Здесь люди и аппаратные платформы говорят на одном языке и помогают друг другу развиваться. Ни один Arduino-проект не обойдется без программной среды. Включая тот, что мы только что собрали. 

Светодиодная лампа – очень приятный проект для программирования, потому что для управления светодиодами есть специальная библиотека FastLed. Нужно зайти в Arduino IDE, открыть Library Manager, найти в нём нужную библиотеку и установить.

FITEKUKL0FAG0IO

На этом сборка магнитной левитирующей лампы завершена. Для вас  открывается бесконечная дорога апгрейдов и дополнений. Заметили, как много свободных входов/выходов осталось на платформе? Может, стоит задуматься о расширении функционала?

Если у вас появились идеи по улучшению сегодняшней сборки, обязательно поделитесь с нами.

Всем решившимся на реализацию проекта – успехов и вдохновения!

До встречи в будущих проектах!

 

Опубликовано в Технологии

Ссылки